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Abstract: Periodic spatio-temporal modulations (STM) of the elastic properties of materials are 
used to break time and parity symmetry of elastic waves. The shape of the STM is shown to 
affect band structure asymmetry, independent of its period.  

Several approaches offer pathways to access the deliberate design of elastic media with broken 
symmetry, including intrinsic and extrinsic methods.  Symmetry in intrinsic systems is broken without 
addition of energy from the outside. In contrast, symmetry can be broken extrinsically by moving 
fluids1,2, gyroscopic inclusions3, or directed and externally driven spatio-temporal modulations of the 
properties of the medium4,5.  
 
In one-dimension, a periodic spatio-temporal modulation can effectively create a moving superlattice 
of the elastic constants in the medium.  The time-dependent superlattice breaks time-reversal and 
parity symmetry leading to bulk phonon modes with non-conventional topology. These bulk topological 
elastic states do not possess the conventional mirror symmetry in momentum space leading to non-
reciprocity in the direction of propagation of the waves. The spatio-temporal modulation results in non-
linear effects that produce features reminiscent of Brillouin scattering and hybridization band gaps. The 
hybridization gaps result from interactions between the Bloch modes of the medium in absence of the 
temporal variation of the modulation and Brillouin scattering-like harmonic modes. Here, we also show 
that the shape of the periodic spatially-varying modulation does matters. We consider various shapes of 
modulations with the same period and velocity. First we consider a general periodic superlattice that 
takes the form of a periodic superposition of Gaussian functions.  Two additional superlattices 
represent Fourier expansions (in terms of sinusoidal functions) of the general superlattice at different 
orders of truncation. The lowest order of truncation actually corresponds to a single sinusoidal 
modulation.  The next order in truncation includes multiple sinusoidal terms.  Note that all Fourier 
components possess the same velocity. We calculate the band structures associated with the three 
modulations using Spectral Energy Density method 6. 

 

Figure 1(b) is characteristic of the band structure of a superlattice that does not evolve in time.  It 
consists of the usual folded bands with gaps opening at the edges of the Brillouin zone and at the wave 
number origin. In contrast, the time-dependent superlattice with the general spatial modulation 
possesses a band structure (Fig. 1(a)) that exhibits a number of features characteristic of broken 
symmetries. These features take the form of hybridization gaps. The interaction between elastic waves 
with frequency f0 and a spatiotemporal modulation of the elastic constants leads to a frequency splitting 
that resembles Brillouin scattering. The frequency of the scattered modes contains harmonics of the 
frequency associated with the moving modulation: fn=f0±nF, where F=V/L and V is the velocity of the 
modulation and L is its period.  These scattered modes appear as faint bands parallel to the folded 
bands of the static superlattice. The scattered modes hybridize with the static folded bands to form band 
gaps.  The gaps form asymmetrically with respect to the wave number origin. For instance, the gaps 
A and Aƍ�result from the hybridization between a first order harmonic (n=1) and the first and second 
bands of the static system.   



 
 

Organizer’s Colloquium 
PHONONICS 2017: 4th International Conference on Phononic Crystals/Metamaterials, Phonon Transport/Coupling and Topological Phononics 

Changsha, China, June 4-June 9, 2017 
PHONONICS-2017-O004 

 

103 
 

  

 
These gaps occur in the positive wave number side of the Brillouin zone without equivalent on the 
negative side. Hybridization between second harmonics (n=2) and the second and third static bands 
produces the gaps labeled B and Bƍ.  These gaps form only on the negative side of the Brillouin zone. 
C and Cƍ�are asymmetric hybridization gaps between third harmonic (n=3) and the third and fourth 
folded bands. Finally, hybridization of the fourth folded band and n=4 harmonics forms gap D on the 
negative side of the Brillouin zone. Asymmetric gaps of the type observed here are known to lead to 
unconventional wave topologies. The asymmetric band structure is characteristic of systems with 
broken parity and time-reversal symmetry.  At frequencies within the gaps, bulk modes can only 
propagate in one direction, that is, they possess non-reciprocity in their direction of propagation. 
Therefore, these modes will also possess immunity to back scattering. In Figure 1(c), the band structure 
of the system with a single sinusoidal spatio-temporal modulation only shows the A and Aƍ� gaps.  
Figure 1(d), shows that when one approaches the Gaussian periodic modulation with a Fourier-like 
VHULHV�RI�VLQXVRLGDO�IXQFWLRQV�DW�VHYHUDO�RUGHUV��RQH�UHFRYHUV�WKH�IHDWXUHV�$��$ƍ�DQG B, Bƍ, and C, Cƍ but 
not the gap D. 

 

We show with a simple theoretical model that shaping spatio-temporal stiffness modulations can be 
employed as a tool for elastic band structure design via the tailoring of specific symmetry breaking band 
features. Using spatio-temporal modulations of various forms offers a vast array of pathways to access 
new topological classes of materials and the controlled transport and reciprocity of electron, photon, 
and phonon trajectories in materials. 
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Figure 1 Band structure of (a) moving general modulation composed of a superposition of Gaussian functions, (b) same 
general modulation but static (velocity is zero).  (c) Moving modulation including a single sinusoidal function representing 
the Fourier series of the general modulation to first-order and (d) moving modulation including multiple sinusoidal functions 
representing the Fourier series of the general modulation to third order.  The band structures are calculated using the SED 
method.  To enhance the contrast, the color contour plots represent the logarithm of the SED intensity. 


